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Abstract 
The wide use of detailed simulations for complex systems has led to a growing interest 
for methods that can optimize simulation-dependent problems using data, without explicit 
equations or derivatives. Due to the lack of derivatives and the dependence on sampling, 
simulation-based optimization algorithms lack convergence guarantees and often require 
a significant number of samples to identify an optimal solution with consistency. 
Moreover, the presence of black-box constraints is an open challenge because it further 
complicates sampling and identification of unknown feasible spaces. Previously, we have 
introduced the Data-Driven Spatial Branch-and-Bound algorithm for box constrained 
problems, which employs data-driven convex underestimators, finds upper and lower 
bounds on the optimal objective value and progressively prunes suboptimal subspaces 
until convergence. In this work, we present recent advances of this framework for 
handling simulation-based and equation-based constraints. We demonstrate the 
performance of these features with respect to convergence and sampling requirements 
through benchmark constrained optimization problems.  
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1. Introduction 
An increasing amount of optimization applications in research and industry today require 
the embedding of various forms of data from simulations of various fidelity and/or scale.   
Such problems are challenging due to the inability to directly use efficient deterministic 
optimization solvers that require equation-based formulations. As a result, optimization 
of such problems is often referred to as “black-box” because it relies on input-output data. 
Many recent contributions from the engineering literature aim to apply and improve the 
performance of black-box optimization techniques for a wide variety of applications 
(Bhosekar et al., 2018). Optimization with embedded simulations can be performed with 
purely sampling-based algorithms, such as direct-search methods, genetic algorithms, 
particle swarm optimization, and many more that are reviewed in (Rios and Sahinidis, 
2013, Boukouvala et al., 2016). Alternatively, a different class of methods employs 
approximations of data to perform optimization, and these are called model-based or 
surrogate-based techniques. Such techniques employ novel mechanisms for data 
collection, fitting of a surrogate model to represent the data, which then allows one to use 
equation-based optimization solvers. In order to avoid excessive sampling, most 
techniques in the literature use a small initial set of samples and subsequently adaptively 
“fit – optimize – resample” the space until their convergence criteria are met. This 
adaptive scheme is always based on techniques that are designed to balance “exploration” 
(i.e., searching the feasible space just enough to minimize probability of missing the 
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optimal solution), and “exploitation” (i.e., focusing sampling in promising optimal 
regions where surrogate models need to be accurate). Recent work focuses on the 
identification and comparison of different types of surrogate models and their 
performance for optimization (Garud et al., 2019).  

Despite recent advances in the simulation-based optimization literature, several open 
challenges still exist. First, many of these methods suffer from the curse-of-
dimensionality, since sampling requirements increase when decision-variables increase. 
Second, when a surrogate model is used, there are open challenges when it comes to the 
selection of a surrogate model that is accurate and has a tractable mathematical 
representation so that it can in turn be optimized (ideally globally). Specifically, some 
popular surrogate models result to equations with nonconvex terms, and the number of 
terms and variables rapidly increase with the number of dimensions, model architecture, 
and even with number of data points. Recent work on global optimization of Neural 
Networks as surrogate models are tackling this challenge (Schweidtmann and Mitsos, 
2019). Third, we have previously shown (Zhai and Boukouvala, 2020) that surrogate 
model selection and training leads to significant variation in the optimal results, because 
if a different surrogate model is used, or different training data are used, many algorithms 
provide a different result. This inconsistency in performance is highly undesirable for any 
optimization algorithm. Last, earlier work in black-box optimization led to algorithms 
that treat the problem as a pure “black-box”, often without the ability to consider 
constraints. However, it is important to treat such problems as “grey-boxes”, which  
allows one to mix known equations that are typically constraints together with an 
objective and constraints that are reliant on the simulation.  

In our previous work, we have proposed an approach that aims to tackle some of the open 
challenges mentioned above (Zhai and Boukouvala, 2020). Specifically, instead of 
relying on a known type of surrogate model, we develop convex quadratic 
underestimators of data. The data may come from high-fidelity simulations, or multiple 
low fidelity surrogate models. The reason for this approach is to avoid several of the 
disadvantages of surrogate modelling, such as: (a) variation in parameters and model type 
with slight changes in data; (b) computational expense of training and selection of best 
model out of many; and (c) intractability of complex surrogate models when it comes to 
their global optimization.  Moreover, our approach utilizes a spatial branch-and-bound 
(b&b) framework to search the space and focus sampling in promising spaces, while 
pruning spaces that are not optimal.  This strategy allows us to incorporate more rigorous 
convergence criteria, such as absolute or relative ε-optimality gap (as opposed to reaching 
a maximum sampling or CPU limit). This Data-Driven Spatial Branch-and-Bound (DD-
SBB) algorithm, also provides estimates of upper and lower bounds on the optimum at 
any intermediate stopping point. We have found that this approach is promising and 
obtains optimal solutions with few sampling points, however, it requires a large amount 
of samples to close the optimality gap.  

In this work, we propose techniques for extending the capabilities of the DD-SBB 
approach in terms of constraints handling. We consider two different forms of constraints: 
(1) simulation-based constraints (i.e., constraints that are unknown in equation format but 
are embedded within the simulation) and, (2) equation-based constraints (i.e., constraints 
that are explicitly known algebraically as a function of decision variables). The type of 
formulations we aim to solve in this work is shown in Problem 1 (P1), where the objective 
function 𝑓𝑓  and constraints 𝑔𝑔𝑠𝑠 are embedded within a simulation and thus we do not have 
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explicit equations for them. Constraints 𝑔𝑔𝑘𝑘 are available in equation format. We only 
consider continuous variables that are bounded. 

(P1) min 𝑓𝑓(𝒙𝒙) 
𝑠𝑠. 𝑡𝑡.    𝑔𝑔𝑠𝑠(𝒙𝒙) ≤ 0, 𝑠𝑠 = 1, . . ,𝑆𝑆 

𝑔𝑔𝑘𝑘(𝒙𝒙) ≤ 0,    𝑘𝑘 = 1, … ,𝐾𝐾 
𝒙𝒙𝒍𝒍𝒍𝒍 ≤ 𝒙𝒙 ≤ 𝒙𝒙𝒖𝒖𝒖𝒖, 𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁 

We implement and test different branching and bounds tightening techniques and test this 
extended capability of the algorithm through a set of benchmark problems. Our approach 
does not add computational cost to the algorithm because it does not require the fitting of 
surrogate models for the simulation-based constraints. Concepts from decision-tree 
techniques are explored for branching the search space cleverly into “feasible” and 
“infeasible” nodes and the performance of different branching rules are compared with 
respect to efficiency and convergence.   

2. Methods 

2.1. Data-Driven Spatial Branch-and-Bound Framework 

The DD-SBB framework starts with initial sampling of the entire box-constrained space 
using Latin Hypercube sampling. Based on these high-fidelity samples from the 
simulation, a low-fidelity surrogate model can be fit, but this model is only used for 
ranking the importance of variables and for generation of large amounts of low-fidelity 
data, to be used to generate the convex underestimators. Convex underestimators are 
found by solving P2, where M is the total number of samples, and 𝛼𝛼, 𝑏𝑏, 𝑐𝑐 are the 
parameters of the convex quadratic function that underestimates all of the obtained data. 
In previous work we have reported results on the validity of these bounds as more data is 
included from high- and low- fidelity samples (Zhai and Boukouvala, 2020). 
 

  (𝑃𝑃2) 𝑚𝑚𝑚𝑚𝑚𝑚  ��𝑓𝑓(𝒙𝒙𝒊𝒊) − 𝑓𝑓𝑙𝑙𝑙𝑙(𝒙𝒙𝒊𝒊)�
𝑀𝑀

𝑖𝑖

 

𝑠𝑠. 𝑡𝑡.   𝑓𝑓(𝒙𝒙𝒊𝒊) − 𝑓𝑓𝑙𝑙𝑙𝑙(𝒙𝒙𝒊𝒊) ≥ 0    ∀ 𝑚𝑚 = 1 𝑡𝑡𝑡𝑡 𝑀𝑀 
𝑓𝑓𝑙𝑙𝑙𝑙(𝒙𝒙𝒊𝒊) = 𝒂𝒂𝒙𝒙𝒊𝒊𝟐𝟐 + 𝒃𝒃𝒙𝒙𝒊𝒊 + 𝑐𝑐   ∀ 𝑚𝑚 = 1 𝑡𝑡𝑡𝑡 M 

𝒂𝒂 ≥ 0 
For each space or node of the b&b tree, a lower bound (LB) is found through minimization 
of the convex underestimator and an upper bound (UB) is the best high-fidelity sample 
collected. The algorithm then proceeds with branching the space with a selected 
branching rule, resampling within subspaces and updating the LB and UB of the problem. 
The branching heuristics originally implemented are equal bisection with respect to 
branch location.  When deciding on which variable to branch on first, the algorithm has 
options prioritizing the longest side or prioritizing the most important variable with 
respect to the objective. The presence of constraints requires several modifications to this 
framework, including novel branching and pruning rules, which will be presented in the 
next section.  
2.2. Branching rules in the presence of constraints  

Branch rules are essential to a branch-and-bound algorithm. Besides equal bisection on 
the longest edge and equal bisection with customized variable selection (Zhai and 
Boukouvala, 2018, 2020), we implemented two other branch rules targeted to handle 
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constraints. In the presence of constraints, samples are labelled as 0 (infeasible) and 1 
(feasible). The proposed branch rules are designed to separate feasible from infeasible 
regions, with the hypothesis that this will help with faster pruning of infeasible regions. 
One strategy is to use a weighted Gini impurity score commonly used in classification 
and regression trees (Kotsiantis, 2013). The Gini impurity score (Eq. (1)) is a measure of 
the tendency that a randomly chosen sample would be misclassified in a node.  
𝐺𝐺 =  ∑ 𝑝𝑝(𝑙𝑙𝑙𝑙𝑏𝑏𝑙𝑙𝑙𝑙 = 𝑚𝑚) ∗ (1 − 𝑝𝑝(𝑙𝑙𝑙𝑙𝑏𝑏𝑙𝑙𝑙𝑙 = 𝑚𝑚))1

𝑖𝑖=0  ∀ 𝑚𝑚 = 0, 1                                      (1) 
 
where 𝑝𝑝(𝑙𝑙𝑙𝑙𝑏𝑏𝑙𝑙𝑙𝑙 = 𝑚𝑚) denotes the possibility of a randomly chosen sample with label 𝑚𝑚 in 
the node. To select the best location to cut, we minimize the weighted Gini impurity score 
(Eq.  (2)), which minimizes the possibility of misclassification if a cut is generated at 𝑥𝑥𝑘𝑘 
on edge 𝑑𝑑.  
 
𝑘𝑘,𝑑𝑑 = 𝑙𝑙𝑎𝑎𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘,𝑑𝑑
(𝑝𝑝�𝑥𝑥𝑑𝑑 ≤ 𝑥𝑥𝑘𝑘,𝑑𝑑� ∗ 𝐺𝐺𝑥𝑥𝑑𝑑≤𝑥𝑥𝑘𝑘,𝑑𝑑 + 𝑝𝑝�𝑥𝑥𝑑𝑑 ≥ 𝑥𝑥𝑘𝑘,𝑑𝑑� ∗ 𝐺𝐺𝑥𝑥𝑑𝑑≥𝑥𝑥𝑘𝑘,𝑑𝑑))         (2) 

where 𝑘𝑘 denotes 𝑘𝑘𝑡𝑡ℎ equidistant location on edge 𝑑𝑑 and 𝑝𝑝�𝑥𝑥𝑑𝑑 ≤ 𝑥𝑥𝑘𝑘,𝑑𝑑� is the possibility 
of a randomly chosen point lies in the potential subspace.  
The second strategy is a customized purity score (Eq. (3)) that measures the difference in 
the fraction of infeasible samples and fraction of feasible samples in each subspace.  
 

𝑃𝑃𝑃𝑃𝑎𝑎𝑚𝑚𝑡𝑡𝑦𝑦𝑘𝑘,𝑑𝑑 = |
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥≤𝑥𝑥𝑘𝑘,𝑑𝑑

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
−

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥≤𝑥𝑥𝑘𝑘,𝑑𝑑
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

|                               (3) 

If one subspace contains samples with only one label, the purity score will be 1. 
Otherwise, the purity score is between 0 and 1. To select the best location, we maximize 
the purity score (Eq. (4)) to separate purely feasible and infeasible spaces.  
 

𝑘𝑘,𝑑𝑑 = 𝑙𝑙𝑎𝑎𝑔𝑔𝑚𝑚𝑙𝑙𝑥𝑥𝑘𝑘,𝑑𝑑(|
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥≤𝑥𝑥𝑘𝑘,𝑑𝑑

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
−

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥≤𝑥𝑥𝑘𝑘,𝑑𝑑
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

| )                           (4) 

where 𝑘𝑘 denotes 𝑘𝑘𝑡𝑡ℎ equidistant location on edge 𝑑𝑑. Note that if one node contains only 
samples with one label, equal bisection on longest edge will be used.   

Figure 1. Motivating example formulation, algorithm performance and results. Red 
points are infeasible, blue points are feasible.  
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2.1. Pruning in the presence of constraints  

Pruning a search node when the node appears to be less promising to find the global 
optimum helps the algorithm converge faster. Generally, a node is pruned when the local 
lower bound is higher than the global upper bound. In the presence of constraints, we 
implemented additional rules to prune nodes that are infeasible. When the constraints are 
known, we perform feasibility-based bound tightening at the root node and at each active 
node. Specifically, we solve a constraint-violation minimization problem to check the 
feasibility of each node, and if a subspace is found to be infeasible, it is pruned. When the 
constraints are unknown, node pruning is less straightforward because decisions are made 
depending on the feasibility labels on the samples instead of explicit mathematical 
constraints. To reduce the chance of pruning feasible regions, backtracking techniques 
are incorporated. When the algorithm encounters a node that contains only infeasible 
samples, it backtracks the parent and grandparent nodes. Only if both the parent and 
grandparent nodes contain purely infeasible samples, will the node be pruned. By doing 
so, we avoid pruning nodes prematurely and allow collection of extra samples  in that 
node, to increase the confidence of pruning the node.  
 

3. Results 

3.1. Motivating Example 

Here we present results on a simple 2-d example that enables us to highlight the algorithm 
performance. In Figure 1, we show the formulation of the problem, as well as the 
performance of the algorithm when the formulation is purely black-box (all constraints 
are simulation-based), grey-box (first constraint is known, second is unknown), to glass-
box (all constraints are known). As expected, as more constraints become known, the 
algorithm converges to the global optimum with less samples. In addition, we observe 
that the additional cost of feasibility tightening does not significantly increase the cost of 
the algorithm. On the contrary, due to faster convergence, the algorithm converges faster 
with respect to run-time when constraints are present. In this motivating example, we 
keep the pruning and branching rule fixed to equal bisection with branching on most 
important variable. A comparison of different heuristics is performed in the next section. 
 
3.2. Algorithm benchmarking 

In order to test the performance of different branching rules, we test the algorithm on a 
larger set of benchmark problems. These are 42 problems from the MINLPlib, with 2-5 
dimensions and no limit on the number of constraints. Results are reported for the two 
extreme cases, namely the black-box case where no constraints are known and the glass-
box case where all constraints are known (Figure 2). Results show that the algorithm can  
locate the global optimum for 80% of the problems in the black-box case, and more than 
85% of the problems in the glass-box case. Moreover, the algorithm converges with less 
samples when constraints are explicitly known. With respect to branching rules, we 
observe that the novel branch rules proposed in this work are able to expedite convergence 
(i.e., more problems are solved with less number of samples). However, overall, the 
equal-bisection branching rule solves more problems if more samples can be collected. 
This implies that these decision-tree rules can expedite pruning, however, they are less 
conservative and thus increase the chance of removing good optimal solutions.  
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4. Conclusions  
In this work we presented an extension of our algorithm for data-driven branch-and-
bound for constraints handling. We propose and test several branching and pruning rules 
in the presence of simulation-based constraints that are based on concepts proposed in the 
literature of decision-trees. In order to treat equation-based constraints, we employ 
feasibility-based bounds tightening techniques. Results show that it is important to use 
any known constraints directly, because this expedites algorithm convergence and overall 
solves more problems without adding computational cost due to reduced sampling 
requirements. Moreover, branching when using decision-tree heuristics expedites 
convergence of the algorithm, however, in certain cases prunes valuable solution spaces. 
As a result, when sampling is not a significant burden, the equal-bisection approach is a 
more conservative and reliable heuristic.  
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Figure 2. Performance of algorithm and different branching rules for set of 42 benchmarks 


